The Modelling and Design of Advanced Wing tip devices

M-DAW
Advanced Wing Tips – The Strategic Challenge

• European Aeronautics Vision for 2020 → http://www.acare4europe.org
 › Quality and Affordability (continuous improvement)
 – Reduced drag
 › The Environment (reduced impact of increased traffic)
 – 50% cut in CO₂ (≡ 50% cut in fuel burn), 20-25% via airframe
 – 50% cut in perceived noise
 › Safety (reduced accidents with increased traffic)
 › Efficiency of the Air Transport System
 › Security
• The 2020 Vision represents a Step change in performance
 › Novel concepts required
• Winglets identified as key technology offering potential in short term
 › Benefits at all stages of flight
 › Retrofit onto existing products
• M-DAW covers the Novel end of a coordinated Winglet Research Activity
Advanced Wing Tips – The Technical Challenge

- Winglet design is a balance between Aerodynamic benefits and Structural penalties

\[\Delta \text{WRBM due to aerodynamic forces} \]

Each Winglet curve represents an increasing load for constant winglet planform

Impact of Winglet retrofit on Rigid Wing

- Off Design Mach No. (Increasing Shock Strengths)
- WINGLET AERODYNAMIC OPTIMUM
- AIRCRAFT OPTIMUM

WRBM = “Wing Root Bending Moment”
Advanced Wing Tips – The M-DAW Objective

“To Deliver to the European Aerospace Industry a Novel Wing Tip Device to Improve Aircraft Efficiency and Environmental Impact together with a Capability to Accurately Predict the Effect of Wing Tip Device Design on Aircraft Performance”

• Develop a deeper understanding of the aerodynamics of wing tip devices
 ‣ Delivering a unique and extensive experimental database
• Assess the capabilities of advanced CFD to predict tip device effects
 ‣ Delivering validated flow simulation methods
• Explore novel wing tip device concepts
 ‣ Delivering an assessment of a range of advanced wing tip device concepts
• Demonstrate the most promising device by wind tunnel testing
 ‣ Delivering a demonstrated performance improvement by an advanced wing tip device

• M-DAW performance targets were stated as
 ‣ A further 1% reduction in aerodynamic drag at cruise
 ‣ A 2% increase in L/D at take-off
 ‣ Relative to a wing with a conventional tip device for a constant aerodynamic wing root bending moment in cruise
The M-DAW Project Plan

WP1 Experimental Investigation
Conventional Baseline Performance
Validation Data
Detailed Study of Flow Physics

2003 2004 2005 2006

WP2 Application of CFD
Validated CFD Design & Analysis Capability

WP3 Novel Wing Tip Device Design
Study of a Range of Concepts Combining to Deliver One Novel Device

WP4 Assessment, Selection & Demonstration
Selection & Demonstration of One Novel Device

Over 330 person months plus 1.8 Million € costs
M-DAW – CFD Validation and Wing Deformation

M = 0.2, Re = 7.2 \times 10^6

Küchemann (TAU)

\eta = 0.56

\alpha = 1.0^\circ

Küchemann Tip

\alpha = 1.5^\circ

Tip Fence

\alpha = 2.0^\circ

50\% Winglet

\eta = 0.56

\alpha = 1.0^\circ

Küchemann Tip

\alpha = 1.5^\circ

Tip Fence

\alpha = 2.0^\circ

50\% Winglet
M-DAW – CFD Validation and Wing Deformation

Kuchemann Tip
M = 0.85, Re = 54.2 × 10^6,
α = 1.5°

Improvement due to accurate simulation of half model effects
Improvement due to accurate simulation of deformation effects

• CFD has proved valuable in the development of a new tip concept
• A combination of CFD and WTT is required to assess performance

Stereo Pattern Tracking
Markers on M-DAW model

16mm
8μm thick

ETW SPT Method (±0.1°)
Design Deformation
ETW Pressure Method

"Virtual Twist" due to technique

Wing Span

Twist Deformation
M-DAW – Advanced Wing Tip Design Activities

• Design Studies Based on:
 ‣ Retrofit scenario
 ‣ “Equivalent Drag”

\[
\Delta C_{\text{Dequiv}} = \Delta C_{\text{Dest}} + \Delta C_{\text{Dtrim}} + \Delta C_{\text{D1gwrbm}} + \Delta C_{\text{Dweight + mech}}
\]

• Design Studies Included:
 ‣ Novel shapes
 ‣ Optimised shapes
 ‣ Movable elements
 ‣ Aeroelastic and Structural effects
M-DAW – Advanced Downward Tip Design

• Approach
 ‣ Vortex Lattice Method study
 ‣ Euler optimisation
 ‣ N-S analysis

• Small Downward Device
 ‣ Modest drag reduction
 ‣ Good WRBM behaviour

• Analysis
 ‣ High and low speed
 ‣ Lateral stability
 ‣ High-g structural impact

Additional lift due to tip device
M-DAW – Advanced Downward Tip Assessment

Dihedral winglet: Favorable trend

Anhedral winglet: Detrimental trend

Vertical Downward Device:
Structural impact remains negligible even at high-g
• Demonstrated in high and low speed tests at ETW
• The performance of the M-DAW novel concept has been broadly confirmed
• Good agreement with drag predictions for attached flow devices
• The SPT wing deformation method confirmed the expected negligible high speed penalty of the novel device
Test Results Summary

- Large winglet offers best drag reduction
- Fence is insensitive to Reynolds Number
- Attached flow Downward Device behaves as Winglet

Design Conditions

\[M = 0.85, \ Re = 35.4 \times 10^6 \]
M-DAW – WTT High Speed C_{Roll} Increments

Test Results Summary

Design Conditions

$M = 0.85$, $Re = 35.4 \times 10^6$

- Large winglet has a significant impact on Rolling Moment and thus structural sizing
- Fence and Downward Device both display low Bending Moment penalties
M-DAW – WTT Low Speed C_D Increments

Test Results Summary

- Large winglet offers the largest span and largest low speed performance benefit
- Fence is not primarily a low speed device
- Attached flow Downward Device offers an improvement over the Fence

ΔC_D

$M = 0.2, \ Re = 7.2 \times 10^6$
M-DAW – Generic Design Conclusions

- The optimum wing tip device will change depending on the aircraft and project context
- The multi-disciplinary trades, and especially the impact on the wing bending moments, can dominate the high speed design process
- Structural and aeroelastic studies, including high-g loads, are an integral part of the design and analysis process
 - The focus of advanced cryogenic wind tunnel test techniques in M-DAW changed from measuring the wake to measuring the geometry
 - Some aero/structural coupling approaches developed in M-DAW
- Span and attached flow are the key drivers for low speed performance
 - Nothing matched the large winglet at low speed
- Whilst the practical multi-disciplinary constraints make dramatic drag reductions unlikely, improvements are possible through careful optimisation
M-DAW – Specific Design Conclusions

• M-DAW achievements relative to the original targets
 ‣ A further 1% reduction in aerodynamic drag at cruise
 – Achieved by the anhedral winglet relative to the large winglet though low speed performance was impacted
 ‣ A 2% increase in L/D at take-off
 – Achieved by the downward pointing winglet relative to the wing tip fence with similar high speed performance

• M-DAW has developed a novel downward pointing winglet that achieves a similarly low drag and bending moment to a wing tip fence due to the changed lift vector, whilst also offering an attractive low speed benefit due to its attached flow design

• Final M-DAW devices, whilst not exploiting revolutionary flow physics, do demonstrate a useful expansion of design space
 ‣ Practical multi-disciplinary issues dominated giving results that are immediately available for industrial consideration

• Downward pointing winglets can be added to the catalogue of useful wing tip devices.
© AIRBUS UK LTD. All rights reserved. Confidential and proprietary document.

This document and all information contained herein is the sole property of AIRBUS UK LTD. No intellectual property rights are granted by the delivery of this document or the disclosure of its content. This document shall not be reproduced or disclosed to a third party without the express written consent of AIRBUS UK LTD. This document and its content shall not be used for any purpose other than that for which it is supplied.

The statements made herein do not constitute an offer. They are based on the mentioned assumptions and are expressed in good faith. Where the supporting grounds for these statements are not shown, AIRBUS UK LTD will be pleased to explain the basis thereof.

M-DAW – Practicalities of Downward Devices

• Considerations
 ‣ Gear collapse crash load philosophy
 ‣ Allowance for cross wind speeds (landing & take-off)
 – JAR 25.445, JAR 25.237, (JAR 25.149)
 ‣ Ground handling philosophy (e.g. support vehicle incident avoidance)
 ‣ Dynamic calculation and margin definition required for any component considered critical

• Constraints but not showstoppers

Designed sacrificial, but still needs to meet standard operational requirements